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In a recent paper, B. Sutherland and B. S. Shastry have constructed an adiabatic process
for the Heisenberg spin chain (spin f; *ith respect to a change of boundary conditions. In
this paper we calculate Berry's phase lor this process. we also evaluate the dependence of
energy levels on boundary conditions which permits us to calculate the effective
charge-carrying mass.

l. Introduction

Consider the Heisenberg spin
described by the Hamiltonian

antiferromagnet on a lattice with Z sites.

Lsr
H = - ,1r ' ;dn'*r  r  o l ,o l* ,+ a ' (o;oi . r  -  l ) I '  ( l . l )

Here o'r' 'r\r are the three pauri matrices (describing spin +), A is the anisotropy
parameter, which we shall denote as

L = cos24 (r .2)
we shall consider the region nl2 < 24 < n. rt is also possible to make a Jordan-
wigner transformation (c = j {o' * ior )) and rewrite the Hamiltonian ( l.l ) in terms
of spinless lattice fermions: (their anticommutation relations are 1c,', rjr.' = 6,,,)

H = -z\rc l ,cn, , tct ,* ,c,)-  oo; f ( . r . ,  -  i ) (4, , r , , . , +) ;l
(1.3)

The complete set of eigenfunctions yr(x, . . .x.ry) of the Hamiltonian (l . l)  is
known, I we shall write them down below.
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Recently, B. Sutherland and B. S. Shastry2 have constructed an adiabatic
process for this Heisenberg chain with respect to a change of boundary
conditions. Consider ly' fermions (described by ( L 3)), each carrying a charge ( - 4)
on a ring of length l. A magnetic flux h&lq threads the ring. Each particle, in
going around the ring (while not seeing the magnetic field), picks up a phase @.
Sutherland-Shastry pointed out that this Aharonov-Bohm effect is accounted for
by replacing the usual periodic boundary condition by the twisted boundary
condition:

Y"(x, ,  . . . ,x j  *  L, . . . ,xn) = e ' tY"1x, , . . . ,x j , . . . ,x,1) .  (1.4)

The Aharonov-Bohm effect on a quantum many-body system was first discussed
qualitatively by Beyers and Yang.3 Now it plays an extremely important role.4
(Below we shall fix our units to be equal to h = l, ffioSS = j.) Foltowing Ref. 2, we
shall consider half-filled lattice 2N = L.

The partition function, Q=tr(exp[ -H/fD as well as the whole spectrum of
the Hamiltonian (l.l) is periodic with respect to <D with the period 22.
(Consequences were discussed in Ref. l.) But if we adiabatically follow an
individual energy level this is not necessarily true. B. Sutherland and S. Shastry
noticed that (under the described conditions) the adiabatic period of the ground
state is 42.

During this process some level crossings occur. Nevertheless during each of
these level crossings two different wave functions have the same energy but
different quantum numbers. These quantum numbers are eigenvalues of conser-
vation laws: momentum, number of particles and so on. Actually the Hamilto-
nian (l.l) has infinitely many conservation laws. This shows that during
energy-level crossing we can follow an individual wave function looking at other
quantum numbers. Roughly speaking, if we keep in mind all the conservation
Iaws, there is no level crossing during this adiabatic process.

In view of the lact that a Berry phase5-8 usually exists for a general adiabatic
process, it is of interest to evaluate the Berry phase related to this adiabatic
process. Here we show that it is equal to z. We found Ref. 7 to be very useful,
because the process considered there is similar to the case we consider.

Another interesting question is the dependence of ground state energy on @.
In the gapless case (in the thermodynamic limit Z * co) the leading rerm in the
variation of energy is

dE(o) = (Df D@, + oQf Q . (1.5)

In Ref. 9, it is explained that the coefficient D is essentially the inverse of the
effective current carrying mass. This coefhcient D is atso called stiffness. The
value of D was evaluated only for a half-filled lattice (L = 2n.e Here we present
formula for D at arbitrary filled lattice. Coefficient D is especially important
because it defines the long distance asymptotics of the correlation functions.
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The spin-stiffness was evaluated for the Hubbard model.e Finite size correc-
tions (formulas similar to ( 1.5)) were obtained for a general Bethe-Ansatz solvable
model. lo

Long distance asymptotics of correlation functions in the l-D Hubbard model
were evaluated by means of finite size corrections.rr

Our paper is organized as follows. In Sec. 2 we remind the reader of the exact
solut ion of the model ( l . l ) .  In Sec.3 we evaluate the Berry phase. In Sec.4 we
discuss the dependence of energy levels on the magnetic flux @. We also evaluate
the effective charge carrying mass for arbitrary filling and relate it to the
correlation functions.

2. Exact Solution of Heisenberg Antiferromagnet

We shall discuss the Heisenbere antiferromasnet:

L

H = -)  t t ;o, ' * r  *  o i ,o) . ,  + A,(o;o, . r  -  1))  .
n=l

Eigenfunctions of the model

(2.r)

11lY) = EIV) (2.2)

can be represented in the form:

(2.3)

Here I t) is a ferromagnetic state, o; is lowering spin operator at the point x. ;t
is N-body wave function, it should be symmetric with respect to all x and should
vanish if two x's coincide. It depends on coordinates and momenta and is equal
to:

(2.4\

Here e(x) is the sign function, the summation is with respect to permutation Q
of the momenta p and 0 is the two-particle scattering phase. Dependence of 0 on

{"=rU,=' 't"'-"')}
" ) t- r)rorexp [,, i -"]
* t*o ["' "= uL. ,'@n"' oo')e('u - *")f
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momenta can be simplifred by introducing the spectral parameter /2r:

sinh (,1- itl)
P(^l  = t  ln srnh ( i  + 14) '

(2.5 )

(2.6\

(2.7)

(2.8)

(2.e)

(2.10)

(2.r2)

(2.13)

In terms of the spectral parameter, the scattering phase can be represented as:

s inh(2i4+Ar-42)

The energy is real for Im,l. = 0 and Im l" = nl2. The last case is more important
because at Im )" = nl2 the energy is negative, so the ground state corresponds to
Im,1 = nl2. This is the reason why it is convenient to introduce a new variable

n + 2sir 24
*th (r, 

-4) "rh q -,4)

s=t"- i | .

The momentum p and the scattering phase I now look like:

cosh (s - 14)
P(s) = i  ln cosh (s + 14) '

o(p,,pz) = g(sr -ru) = t"u*jfiffi
We define the branch of the logarithm in the following way

O(pvpz) = 0(trr-) . t )  = i ln

Energy of this state is equal to:

sinh (2i  4 -  A, + i r)  '

=0 for  Ims=0

p(0)=0, p(s)=-p(-s) ,

0(0) = 0,  d(s)  = -9(-s) .
(2.  1 1)

Derivatives of these functions are also imoortant in order to follow the adiabatic
process:

sin24 =0 for Ims=0.p'(s) =

9'(s) =

cosh (s + i 4) cosh (s - iry)

sin44
sinh (s + 2irl) sinh (s - 2in)
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Let us now impose twisted boundary conditions X.6r + L, . . .) = X(xt,. . .) exp iO.
This leads to the system of transcendental equations for the set of {s}:

A
\-f

Lp(s*\ + / 0(sr - s1) = 2nlp + Q .
j  = t , j *k

Here the set of N integers (or half integers, depending on the parity of N) are

Ir* t  -  1r  = I  ,
(2.  t  5)

11,  = -(N -  t ) f  2, . . . , ( t \ /  -  Dlz
This is the ground state for the half-filled lattice L--2N. The wave function 1^- is
antisymmetric with respect to the permutation of any two momenta and
symmetric with respect to the permutation of x's.

Later we shall need to apply the space parity reflection {x} - { - x}, {p) ' { - p}
to the wave function (2.4). First of all, it is convenient to change the enumeration
of the sites of the lattice in such a way that the set of xj coincide with the set of
( - x). As we have a lattice of even length L = 2N this can be achieved in the
following way:

x j  = -(L -  t )12,  - (L -  \ f2 + r , . . . , (L -  Dl2 .  e. t6)
All coordinates here are half-integers. Now the behavior of the wave function
under reflection is the followins:

-  Pr,  . . .  ,  -p,r)  = (  -  1;nt t - ' l ' 'xr("r , . .  .  ,xN lpr , . . .  ,px)
(2.17)

Here we used the symmetry of L with respect to x,.

3. Berry Phase

Consider the twisted boundarv conditions

(2.r4)

(3.1)
N
\ir

Lp(si + / 0(sr - s) = 2nlp + Q .
J = t .  j+k

Let us describe the adiabatic process. For the ground state where O = 0, all sp
are real and symmetric with respect to s = 0: {sr} = { - s6}, let us denote them by
sf.  For smal l  O, al l  Ims4 &r€ st i l l  equal to zero. For @ =4n fu<4n=2r),  the
biggest sp (it is s1,,) will reach infinity and all other sp will form the ground state
of the (N- l )  part ic le sector.  When 4q<@<2n,the value of Srywi l l  be on the
Im,1=0 axis ( ,1= s +in/2) and al l  other sp's wi l l  stay on the Im s=0 axis ( they
will move non-monotonically). At O = 2n, the configuration will be s, =
- inl2 Q"* = 0), all other sp will be real and symmetric with respect to the s = 0.
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This is the eigenstate (excited) for periodic boundary conditions. Let us denote
this set of sa by sf. For Q=4n, we shall denote the configuration of sr by {sf}. It
is related to the original ground state configuration in the following way:

s, f ; .= sf l ,  Jf  = sf l . , ,  k=1,. . . 'N -  I  ,

pf t  = p{ + 2n, pt  = psk, t ,  k=1,. . . ,N -  I  ,

t - i f r  I
14(t))  = exp L I  dt '  E(OQ'))  |  exp ( i l ( t ) ) l  r / ( t ) l

ln Jo I

Since this process is adiabatic. we have:

(3.2)

(3.3)

(3.4)0(pft,pf) = 0(pst,psk,) - 2n ,

o(pf ,pf)  = o(Pf,vPsk*),  N -  1 >l> k>l

So the set of so coincides with the set of st. This is the adiabatic process of
Sutherland and Shastry.l

If we adiabatically follow the excited state (which is mentioned above), we
shall discover that its period is also LQ -- 4n. In this case it is more convenient
to change O in the interval  -2n=Q=2n. The value O=0 correspond to the
ground state, the values @= +2zcorrespond to the excited state. At an arbitrary
value of in this region, we have:

{-Res,(<D),- . ,  -Resn(O)) = 1Res"(-O), . . . ,Res,(-O)} .  (3.5)

Imaginary parts are the same.
We shall use this for the evaluation of the Berry phase. To do this, we must

consider the time-dependent Schrodinger equation:

lo(r)> = Hlot t )> (3.6)

Solution of this equation is related to the eigenfunction of the time independent
Schrodinger equation (2.2) in the following way:

A
th -

dt

(3. t1

(3.8)
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when the system goes around the circle with ao =4n,the wave function lo(/))
will get an additional phase factor

(3.9)

where r is period of adiabatic change of o from 0 to 4n and y is the Berry phase

(3.  I  0)

After a change of variables, we get

*r f; f a,, tro(,,))]exn r;y;

I
l-_I  t :n

/  = Rel i  |  ^  da
uto{$l*ror
(1/(o) l,r(o))

The time independent wave function should satisfy the

r/(o + an) = 9@) .

Let us check our wave functi on (2.4) with reference to (2. l6). In
0 are functions of {.}} (see (2.9) and (2.10)) which depend on
system (3.1).  Formulas (3.2)-(3.4) and (2.4),  (2.16) show that

,trv(O + 4n) = -,X,ry(@) .

Thus we can substitute in (3.1l) the following wave function:

| /(o)) = exp Qaf\ ru(o)
which sat isf ies (3.12).  Putt ing this in Eq.(3.1t) ,  we get

.  (3.1l)

following condition

(3.r2)

(2.4), all p and
(D by means of

(3.  I  3)

(3.  l4)

/= -  t t

. . ,rN lpr(o), ,p^,(o)) $ rntr,, . . . ,x- lp,(o), . . . ,p^(o))

llr,^,(o)ll2
(3,  I  5)

where summation is with respect to each x, through the region of (2.16) which is
invariant under the reflection. Now let us use (3.5), (2.4) and (2.17) to show that:

ll.r(o)ll'? = ll,r( - o)ll'z

(3.  l  6)

(3.17)

|_

-,- | ['" ao ) 1{+
Lt - 'o i l
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and the following expression is an odd function of @

- 
I , r , (xr ,  . . .  ,xA. lp,((D),  . . .  ,pN(O)) * .x*(r , , . . .  , - {Nlpr(O),  . . ,  ,p,(O))

\ oq/
L1.r, ll/^,(o)ll'

(3.  I  8)
Thus the integral in (3.15) vanishes and the Berry phase is equal to:

(3.1e)
The answer y = z is also correct because 7 is a phase.

The interesting question is the following: Is it possible to define the Berry
phase for the smaller change of twisted boundary conditions Le = 2n? In this
case, the ground state and excited state exchange their positions. At o = n. the
levels cross, but they have different momenta. This permits us to follow the levels
individually. We can introduce a matrix which relates the adiabaticallv continued
wave functions r/f, *i to the original ones t!t", rlo

o,(!;,) (3.20\

(3.2r)

process AQ =4n.

(3.22)

(3.23)

(4.1)

/o, = \,i,,
The square of matrix M describes the
Comparing with formulas (3,9) and (3.19),

tnnm2t = - exp l,  I  n,, E@a,D].
This shows that the matrix M has two eigenvalues + z

m = i*WIa,, t rou,yf

6E(@) = !o' + oef L)

ar, \
o/

original adiabatic
we get

where z is the period corresponding to Ao = 42. This means that there exist two
different linear combinations of the ground state and the excited state which set
factors + m afLer adiabatic continuation for L@ = 2n.

4. Effective Charge-Carrying Mass

under the twisted boundary conditions (r.4), the ground state energy changes
by
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In Ref. 9, it is explained that D is essentially the inverse of effective current
carrying mass, and was evaluated for a half-filled lattice only. Here we shall
evaluate it for arbitrary fil l ing. To do this, let us generalize the Hamiltonian (l.l )
by introducing a one-dimensional magnetic field /r:

L

H = -  ) - {" ;d i )*r  + ol ,o) t ,+a(o;oi , r - l )+h(oi ,  -  1)} .  (4.2)
rl= I

In the fermionic language of (1.3) this means the introduction of a chemical
potential (one should add term 2h 2, cj c,, to ( 1.3)). (A one-dimensional magnetic
field should not be confused with two-dimensional which produced twisted
boundary conditions.) The one-dimensional magnetic field changes the ground
state, since now the magnetization

<o=) = o (4.3)

is non-zero. One can introduce the magnetic susceptibility

dox= ah. @.4)

From Ref. 12 and Ref. 13. it is clear that

O=Er ' r .  (4.5)

Here u is Fermi velocitv

n,  -  ot ,
D = 

del Fermi rever ' @'6)

Here e and p are energy and momentum of the excitation. It is explained in more
detail in Ref. 12. For a half-fil led lattice both the Fermi velocity and the
susceptibility were calculated in Ref. l:

, - 2n si\2q , x. = I::!-
f t -zrr  

=2"4t1"4'  @'7)

This permits us to reproduce the result of Ref. 2 for D,

D = 
'ftsin244nlTr -  zD 

(4'8)

and the energy gap in the ,S- = 0 sector:

6E(2n) = ,nt) 'n '= ' ,  + o1t le.  (4.9)
L\( f t  -  24l .  t
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Results of Refs. 12 and l3 also permit rhe evaluation of the energy which is
necessary to remove d particles from the ground state at arbitrary filling:

@a26no=f i+o(r fe.
At half-filling for one particle we reproduce:r

au,=f f i+oefLt .

u '=+(*r , .#)  + ol t f  L)

(4. r  l )

considering once again arbitrary filling, let us remove d particles and impose
twisted boundary conditions. The energy change is additive:

(4.10)

(4.12)

(4.13)

It is also important to note that the ideas of conformal field theoryra permit us
to relate finite size correctionsr5'r6 lsee (4.12)) and long distance asymptotics of
correlation functions. For example from Ref. 12, one can get:

p=#,(o'(x, r)o- (0, 0)) -*
l f  -@t12lBrz '

(o ' (x, t )o ' (0,0))-  otn o 
,*-J -+b(- ly 

coszox
(x - ut)' (x + ul)r lx2 - (ut)2 1{trzh 

'
(4.r4)

This illustrates the relation of coefficient D with transport properties. It is also
interesting to mention that the calculation of this section was done for the
Hubbard model in Ref. I I.

Acknowledgments

v. K. would like to thank A. Goldhaber, D. coker, and S. Dasmahapatra for
useful discussions and B. Sutherland and S. Shastry for sending their preprints
before publication. one of us (A. w.) wishes to thank prof. c. N. yang for his
kind hospitality at Stony Brook and we both thank prof. yang for enlilhtening
discussions.

References
l. C. N. Yang and C. P. yang, phvs. Rer:. 147 (1966) 303; r50 (1966) 32r, 327: rsl(1966) 258.
2. B. Sutherland and B. S. Shastry, phys. Reu. Leu.65 (1990) 1g33.
3. N. Beyers and C. N. yang, phys. Reu. Leu.7(196l) 46.
4. B. L. Al'tshuler and P. A. Lee, physics Today, Dec. l9gg, p.2.



Adiabatic Transport Properties & Berrv's Phase in Heisenberg-lsing Ring 507

5. M. V. Berry, Proc. Roy. Soc. Lond. 4392 (1984) 45.
6. B. Simon, Phys. Reo. Lett. 5l (1983) 2167.
7. Y. Aharonov and J. Anandan. Phys. Reu. Lett.58 (1987) 1593.
8. F. Wilczek and A. Shapere, eds., Geometric Phases in Physics, (World Scientific,

I  989).
9. B. S. Shastry and B. Sutherland, Phys. Reu. Leu.65 (1990) 243.

10. A. G. Izergin, V. E. Korepin and N. Yu. Reshetikhin, J. Phys. A22 (1989) 2615.
I l. N. M. Bogoliubov and V. E. Korepin, Mod. Ph1ts. Lett. Bl ( 1988) 349 Int. J. Mod.

Phys. 83 (1989) 427; H. Frahm and V. E. Korepin, Preprint SUNY Stony Brook, ITP
sB-90-33.

12. N. M. Bogoliubov, A. G. Izergin and V. E. Korepin, Nucl. Phys. 8275 (1986) 687.
13. N. M. Bogoliubov, A. G. Izergin and N. Yu. Reshetikhin, J. Phys. A20 (1987) 5361.
14. A. A. Belavin, A.M. Polyakov and A. B. Zamolodchikov, Nucl. Phys.B24l (1984)

JJJ.

15. J. L. Cardy, Nucl. Phys.8270 (1986) 186.
16. H. W. J. Blote. J. L. Cardy and M. P. Nightingale, Phys. Reu. Lett. 56 (1986) 742.


